Fish Health

Alex Primus, DVM, PhD University of Minnesota, College of Veterinary Medicine

Iowa Aquaculture Conference November 14th, 2017

Presentation Overview

- Intro to Fish Health & Disease
- Pillars of Fish Health
- Infectious Disease
- Resources

Manifestation of Disease

Diversity of Species & Systems

Pillars of Fish Health in Aquaculture

- Environment
 - Water Quality / Life Support
- Husbandry
 - -QA/QC, Nutrition, Sanitation, \downarrow Stress
- Disease Prevention
 - Biosecurity, Health Monitoring, Vaccination
- Disease Management
 - Diagnosis, Treatment & Continuing Prevention

Pillar I: The Environment

- Water Quality
 - Poor Water Quality is The Most Common Source of Fish Health Issues*
 - Can directly result in immediate and significant losses
 - Ex. \sqrt{dO} , \uparrow TGP, \uparrow NH₃, toxicants, treatment overdoses
 - More commonly, poor WQ results in secondary and/or chronic fish health issues
 - Ex. \uparrow NO₃⁻, \uparrow TSS, \uparrow / \downarrow / \triangle in pH, temp., gH, kH, salinity, trace elements → poor growth, death, opportunistic bacterial infections and/or ectoparasitic infestations
 - Good & Stable WQ is imperative to Fish Health

^{*}In my experience in NCR, >50% fish health issues in aquaculture likely due to poor WQ. This likely differs by region, sector, etc., but worth consideration in most cases.

Pillar I: The Environment

- Water Quality (cont.)
 - Keys to Maintaining Good & Stable WQ
 - Know what parameters are most important for your system
 - Have the right equipment/materials (and backups) to maintain these parameters – "Life Support System"
 - Measure these WQ parameters regularly and appropriately
 - Document measurements and adjustments
 - Know how to manage your system/production unit if needed
 - Have a plan for emergencies/disasters that may impact WQ
 - Note: Intensive and RAS systems may require more attention, but these suggestions apply for all systems

Pillar I: The Environment

- Stress can have a significant negative impact on fish health
 - Ensure the rearing environment is <u>safe</u> and <u>species-appropriate</u>
- Factors to consider include:
 - Stocking density
 - Social/behavioral needs
 - Substrate, containment & sharp edges
 - Lighting regimen & excess noise/activity
 - Other environmental risks
 - Sunlight, predators, pathogen vectors, etc.

And you thought there was stress in *your* life!

Pillar II: Husbandry

Just a few points related to health

QA/QC

- Protocols, Documentation, Training & Consistency
 - Stability of the system
 - Ability to identify areas of improvement in your system

Nutrition

- Use species-specific and age-appropriate feed
 - Different species can have very different requirements
- Store feed as recommended by the manufacturer
 - Sealed container in cool, dry area off ground
- Use feeding time to get a good look at your fish

Pillar II: Husbandry

Just a few points related to health

- Sanitation
 - Keep things clean
 - Culture area, equipment, PPE
 - When choosing infrastructure and equipment, select items that are easy to sanitize
 - Regularly remove excess waste/feed from water
 - Use a fallow period if possible
- Minimize Stress

Pillar III: Disease Prevention

- Biosecurity
 - External barriers fences, locked doors, signs
 - Regulate all incoming biosecurity risks
 - New stock
 - Fish Health Testing "SPF-fish"
 - Quarantine, Evaluate & Treat if Necessary
 - Visitors & Equipment
 - Minimize risk of contaminated individuals & equipment
 - Mitigate acceptable risks by decontamination / PPE
 - Isolate populations/stocks
 - Minimize movement of personnel, equipment, stock between production units
 - Mitigate risk of cross-contamination
 - Decontamination of equipment & PPE
 - Traffic flow based on:
 - » "Clean" to "Dirty" areas
 - » High-risk to Low-risk

Pillar III: Disease Prevention

- Health Monitoring
 - Fish Health Log
 - Document Fish Health Information
 - Ex. daily mort's, issues, Dx's, Tx's, etc.
 - Surveillance
 - Active planned evaluation of healthy fish
 - On Site Testing: Ectoparasites, Necropsy, FHI
 - Dx Lab: Bacteriology, virology & additional options
 - Passive evaluation of sick or dead fish
 - Above testing +/- NGS & EM
- Vaccination

Pillar IV: Disease Management

Diagnosis

- Appropriate Dx (including root cause analysis) important for:
 - ID of appropriate Treatment
 - Knowing your prognosis
 - Modification of Environment, Husbandry & Biosecurity

Pillar IV: Disease Management

Treatment

- Appropriate for disease and production system
 - Ex. Antibiotics & chemotherapeutants in RAS?
- Legal
 - Feed-based antibiotics now require vet oversight
- Should include follow-up and elimination of initiating factors
 - Many bacterial and ectoparasitic issues result from poor water quality, stress, etc.
- Continuing Prevention

Common Freshwater Diseases

- Parasites
- Bacteria
- Viruses
- Water Molds
- Other

Ectoparasites of FW Fish

General notes

- Inhabit gills, skin, fins
- Low numbers asymptomatic
- High numbers morbidity & mortality
- Low \rightarrow High typically due to:
 - Stress & Poor WQ
- Symptoms variable
 - Flashing, gross lesions, respiratory distress
- Dx: "Wet-mounts" typically sufficient
- Tx: Several immersion options (ex. Salt, Formalin, Potassium Permanganate, Copper Sulfate)

"Ich" – White spot

Trichodina

Monogenean

Endoparasites of FW Fish

- General notes
 - Inhabit many tissues
 - Generally asymptomatic
 - Complex life cycles common
 - Snails, arthropods, birds, mammals
 - Includes several types of worms and a few oddballs
 - Dx: Necropsy +
 - Tx: Often not treated,
 sometimes managed by
 controlling other hosts

Bacteria & Viruses

General Notes

- There are many bacterial and viral diseases of fish
- Many are species specific, others have a wider host range
- Many (if not most) are difficult to identify based on clinical signs / gross morphology
- Common general clinical signs include:
 - Petechial hemorrhage
 - Edema, or "Dropsy"
 - Exophthalmia
 - Ascites
 - Darkening of skin
 - Going off feed

Bacteria & Viruses

- General notes
 - Many bacteria are opportunists they would not cause disease if the fish was otherwise healthy
 - Diagnosis is typically based on the following:
 - Bacteria: Aerobic culture of kidney or brain, PCR
 - Viruses: Viral isolation, PCR, electron microscopy
 - ...there are exceptions though
 - Prevention is key
 - Biosecurity
 - Vaccination (most are injectable, some immersion)
 - Treatment: Antibiotics for bacterial pathogens (via feed)
 - Challenge: Fish often stop eating when sick

Bacteria & Viruses

- Prevention vs. Treatment: Prevention is the Key!!!
 - No treatments for Viruses
 - Subclinical infections (viral or bacterial) would likely compromise:
 - Immune function → increased susceptibility to other pathogens
 - Production efficiency
 - Use of Antibiotics for Bacterial Infections has its downsides (compared to Prevention of Disease)
 - By the time treatment starts, you will probably already have lost fish, possibly a LOT of fish
 - It can be very difficult to get antibiotics into fish
 - Typically in feed, but if fish not eating...
 - There are concerns with antibiotic use
 - Potential for development of resistance
 - Marketing / Added-value in minds of many consumers
 - Environmental contamination / sustainability concerns (particularly with aquaculture)

Water molds

- Saprolegneosis (Oomycete infection)
 - Caused by one of several saprophytic / pathogenic species of water molds (but only in freshwater)
 - Often called "fungal infections", but not true fungus
 - Ubiquitous in freshwater and soil
 - Form spores that are highly impervious to treatments
 - Disease itself results from hyphal growth on skin or gills
 - Appears fluffy like cotton underwater
 - Often appears following acute stress, drop in temperature, transport, etc.
 - Damages skin or gills which results in 2° infection or osmoregulatory dysfunction
 - Very difficult to treat once established
 - Because it is saprophytic, will start growing on fish that die in water can be diagnostic "red herring"

Fish Health Resources

Books

- Ex. "Fish Disease: Diagnosis and Treatment"

- Websites
 - OIE Aquatic Code
 - FAO Aquaculture
 - AFS Fish Health Section
 - Regional Sites NCRAC, SRAC
 - The Fish Site
- People
 - American Association of Fish Veterinarians
 - Aquaculture extension specialists
 - Diagnostic Labs public and private

Questions

Radiographs by Dr. Shane Boylan, South Carolina Aquarium