# Using Confinement as a Component in Beef Production Systems

Karla H. Jenkins, Shelby Gardine, Jason Warner, Terry Klopfenstein, Rick Rasby





### Availability of Grass Reduced

- Chronic Drought Conditions
- More crop production acres
- Urbanization

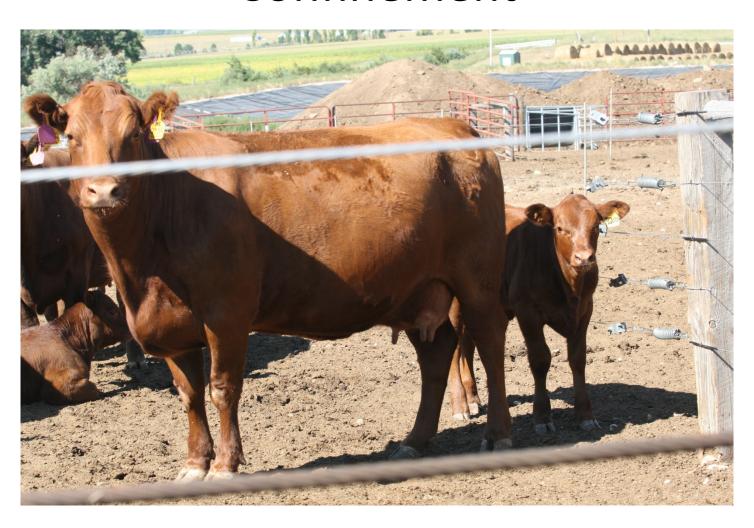
Increased value of grass

# Interest in Adding Some Confinement Continues

- Producers with limited perennial grass access
- Young Producers Returning to the Operation without capital to invest in more land
- Producers where grass must be intensively managed

### Research vs. Production

- First two years research study was total confinement
  - Studied all phases of the production cycle in confinement
- Last three years' research is a systems approach
- Every producer has a unique system and therefore must determine what will work best for any given operation


## **Confinement Feeding Cows**



### **Limit Feeding Confinement Cows**

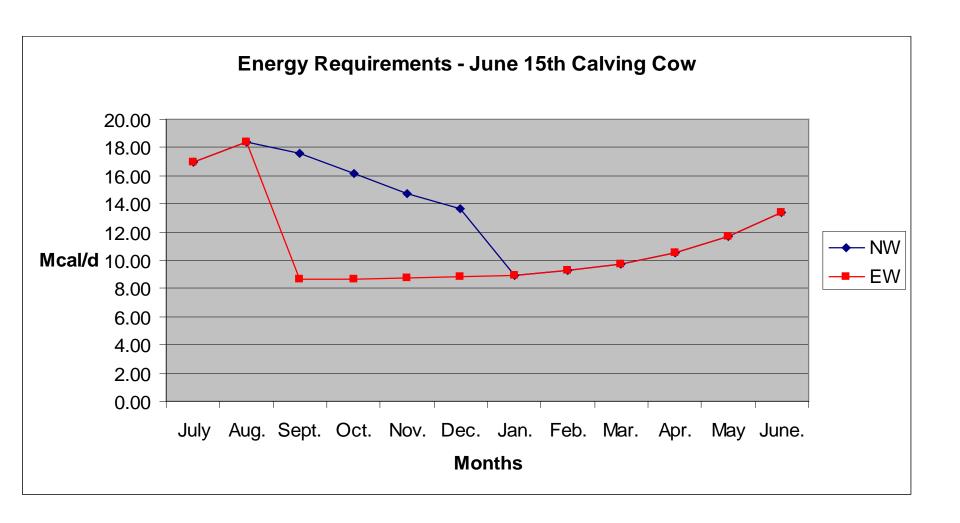
- Energy dense by products can be mixed with low quality crop residues
- Dry matter intake can be limited
- Cow condition can be maintained because nutrient needs are being met

# Key Concepts for Limit Feeding Cows in Confinement



# Knowing the Nutrient Content of Feedstuffs




### TDN of common by-products and Forages

| Ingredient <sup>1</sup>                                  | TDN (%DM) |
|----------------------------------------------------------|-----------|
| Corn distillers grains (wet, dry, modified) and solubles | 108       |
| Sugar beet pulp                                          | 90        |
| Soyhulls                                                 | 70        |
| Synergy                                                  | 105       |
| Corn gluten feed                                         | 100       |
| Midds                                                    | 75        |
| Corn                                                     | 83        |
| Wheat straw/corn stalks                                  | 43        |
| Meadow Hay                                               | 57        |
|                                                          | ·         |

1Feeding trials reported in NE Beef Report 1987, p.4; '88 p. 34; '93, p. 46; midds data from KSU Research Report

# Be Aware of Changing Nutrient Requirements





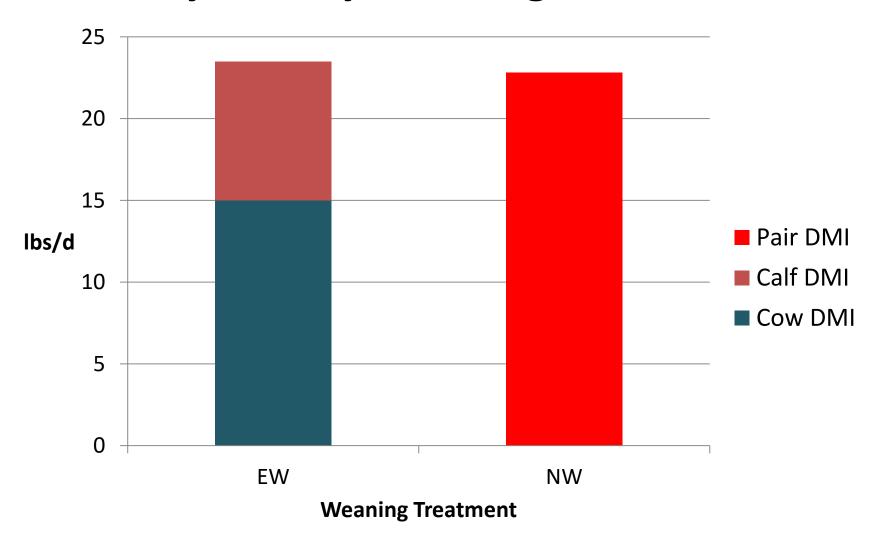
# Accounting for the Dry Matter Intake of the Calf



| Diet (DM | Ingredients   | Late      | Lactating             | Cow with |  |
|----------|---------------|-----------|-----------------------|----------|--|
| ratio)   |               | Gestation | Cow                   | 60 d old |  |
|          |               | Cow       |                       | calf     |  |
|          |               | Dry       | Dry matter intake, lb |          |  |
| 57:43    | Distillers    | 15.0      | 18.0                  | 20.0     |  |
|          | grains:straw  |           |                       |          |  |
| 30:70    | Distillers    | 19.2      | 23.0                  | 25.6     |  |
|          | grains:straw  |           |                       |          |  |
| 40:20:40 | Distillers    | 15.4      | 18.5                  | 20.6     |  |
|          | grains:straw: |           |                       |          |  |
|          | silage        |           |                       |          |  |
| 20:35:45 | Distillers    | 14.6      | 17.5                  | 19.4     |  |
|          | grains:straw: |           |                       |          |  |
|          | beet pulp     |           |                       |          |  |








# Limit Feeding Lactating Cows in Confinement



- Year 1
- Lactation diet after 90 days (DM basis)
- 60% Wet Distillers
- 40% Straw/stalks
- Early weaned cows 15 lb DM
- Late weaned pairs 22 lb DM
- Year 2
- Lactation diet after 90 days (DM basis)
- 40% Wet Distillers
- 20% Straw/stalks
- 40% Corn silage
- Early weaned cows 15.5 lb DM
- Late weaned pairs 24.9 lb DM

### **Daily DMI By Weaning Treatment**



# Lessons Learned from Total Confinement

- Pairs can be maintained in total confinement, although it may or may not be the least expensive system
- Using the most inexpensive commodities is important
- Limit feeding cows energy dense diets maintains cows - calves may need additional feed resources
- Early weaning may be a useful management tool

### Lessons Learned from Total Confinement

- Calves learned to eat with their mothers
- Learned what the feed truck was

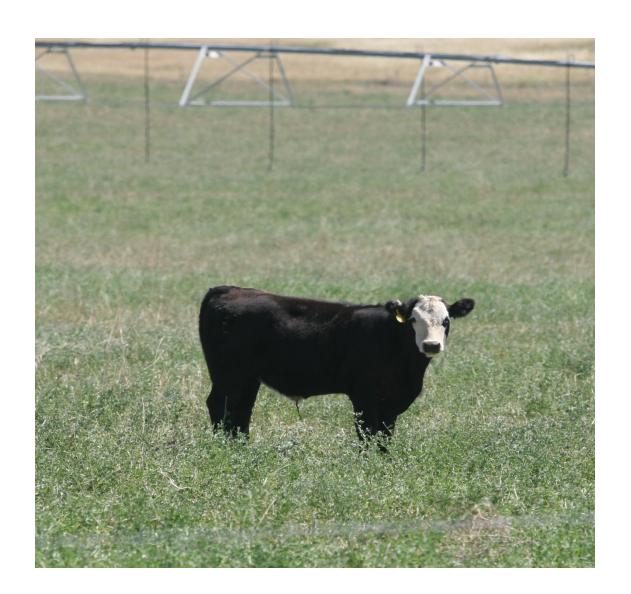


### **Management Considerations**

- Water
  - Calves learned to drink from trough within a few days of age.
  - Calves need water for hydration and rumen development.
- Bunk space
  - 2 ft/hd (adult cattle) & 1-1.5 ft/hd (calves).
- Pen space
  - $-350 400 \text{ ft}^2/\text{hd}$ .







# Confinement Feeding outside the Feedlot

- Limit feeding on pasture
  - Cattle will continue to consume forage if allowed
  - Pastures could continue to suffer overgrazing
  - Use winter feeding ground, crop ground, pivot corners

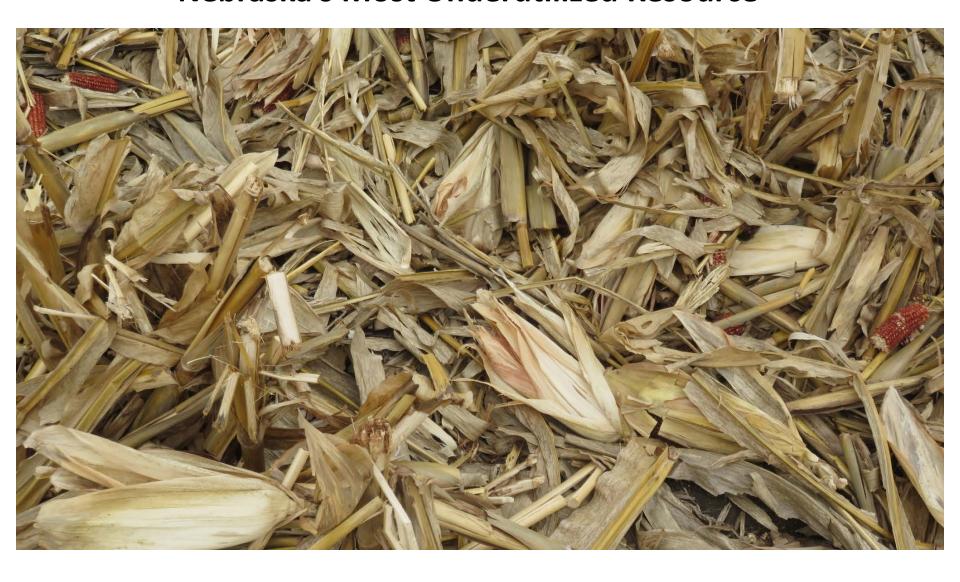
# Incorporating Some Confinement Feeding Allows for Thinking Outside the Box



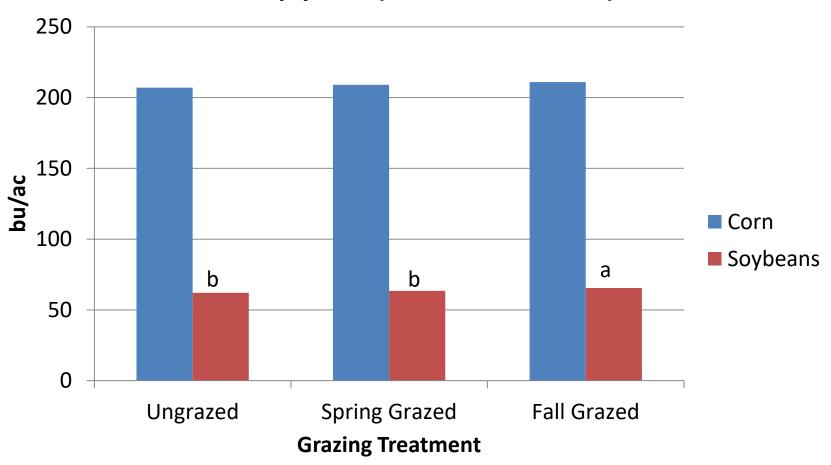
## Thinking Outside the Box




## Thinking Outside the Box

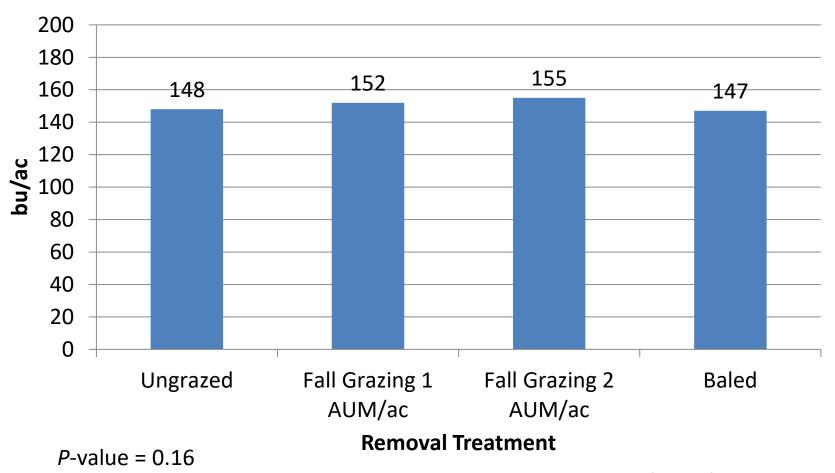



## Thinking Outside the Box





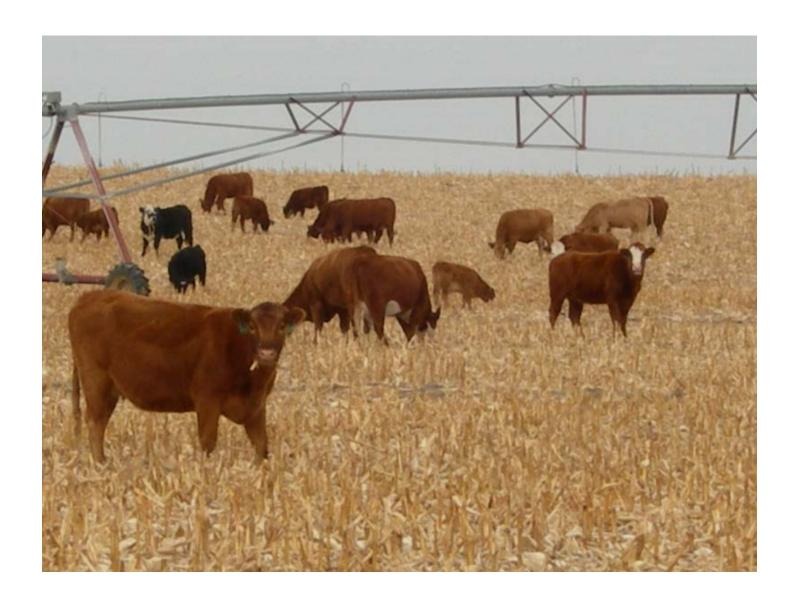

### **Nebraska's Most Underutilized Resource**




## Effect of grazing corn residue in the fall/winter or spring on crop yields (03'-13', Eastern NE)



Drewnoski et al., 2015


## Effect of corn residue removal on corn grain yield (09'-13', Western NE)



Drewnoski et al., 2015

## **Confinement Feeding Cows**





### **Procedures**

- Two locations: the Eastern Nebraska Research and Extension Center (ENREC) feedlot and the Panhandle Research and Extension Center (PREC) feedlot
- Seventy-six (n=47 at ENREC; n=29 at PREC)
  lactating, composite (Red Angus x Red Poll X
  Tarentaise x South Devon x Devon) beef cows with
  summer-born calves
- Within location, pairs were blocked by cow BW (ARDC=4; PREC=3 blocks for drylot and 2 blocks for cornstalk grazing), stratified by calf age, and assigned randomly to one of two treatments: 1) dry lot feeding (DL) or 2) cornstalk grazing (CS).

### **Drylot Diets**

#### Location

| Ingredient, %                                | ENREC | PREC |
|----------------------------------------------|-------|------|
| Modified wet distillers grains plus solubles | 55.0  |      |
| Wet distillers grains plus solubles          | _     | 58.0 |
| Wheat Straw                                  | 40.0  | 40.0 |
| Supplement                                   | 5.0   | 2.0  |
| <b>Calculated Composition</b>                |       |      |
| DM, %                                        | 62.4  | 47.0 |
| CP, %                                        | 19.3  | 18.8 |
| TDN, %                                       | 79.1  | 81.0 |
| NDF, %                                       | 54.0  | 54.9 |
| ADF, %                                       | 31.0  | 21.6 |
| Ca, %                                        | 0.79  | 0.77 |
| P, %                                         | 0.52  | 0.49 |

<sup>&</sup>lt;sup>1</sup>All values presented on a DM basis

<sup>&</sup>lt;sup>2</sup>Supplements included limestone, trace minerals, and vitamin A,D,E premix

#### Supplement fed to cow-calf pairs on cornstalks<sup>1,2</sup>.

| Ingredient, %                         |       |
|---------------------------------------|-------|
| Dried distillers grains plus solubles | 94.51 |
| Limestone                             | 3.50  |
| Pelleting binder                      | 1.88  |
| Vitamin A,D,E                         | 0.11  |

<sup>&</sup>lt;sup>1</sup>All values presented on a DM basis.



<sup>&</sup>lt;sup>2</sup>Fed at **5.2 lb** per pair per day (DM).

## Cow Performance in Confinement and Partial Confinement

| Item                                         | CS <sup>2</sup> | $DL^3$ | SEM | P-value |
|----------------------------------------------|-----------------|--------|-----|---------|
| Cow BW, lb                                   |                 |        |     |         |
| Initial                                      | 1183            | 1187   | 62  | 0.93    |
| Ending                                       | 1121            | 1322   | 57  | <0.01   |
| Cow BW<br>Change, lb<br>Cow BCS <sup>4</sup> | -64             | 132    | 16  | <0.01   |
| Initial                                      | 5.3             | 5.3    | 0.3 | 0.92    |
| Ending                                       | 4.6             | 5.9    | 0.2 | <0.01   |
| Cow BCS change <sup>4</sup>                  | -0.7            | 0.5    | 0.2 | <0.01   |

<sup>&</sup>lt;sup>1</sup>Two years of data from ENREC and 1 year of data from PREC

<sup>&</sup>lt;sup>2</sup>CS= pairs wintered on cornstalks

<sup>&</sup>lt;sup>3</sup>DL= pairs wintered in drylot

<sup>&</sup>lt;sup>4</sup>BCS on a 1 (emaciated) to 9 (obese) scale

### Calf Gain by Wintering System

| ltem                                                    | CS <sup>2</sup> | DL <sup>3</sup> | SEM | P-value |
|---------------------------------------------------------|-----------------|-----------------|-----|---------|
| Initial age, d <sup>4</sup>                             | 125             | 129             | 5   | 0.49    |
| Ending age, d <sup>5</sup>                              | 282             | 284             | 3   | 0.51    |
| Calf BW, lb                                             |                 |                 |     |         |
| Initial                                                 | 331             | 326             | 9   | 0.68    |
| Ending                                                  | 541             | 642             | 13  | <0.01   |
| Calf ADG, lb                                            | 1.33            | 2.04            | 0.1 | <0.01   |
| BW•d <sup>-1</sup> •age <sup>-1</sup> , lb <sup>6</sup> | 1.96            | 2.32            | 0.1 | <0.01   |

<sup>&</sup>lt;sup>1</sup>Two years of data from ENREC and 1 year of data from PREC

<sup>&</sup>lt;sup>2</sup>CS= pairs wintered on cornstalks

<sup>&</sup>lt;sup>3</sup>DL= pairs wintered in drylot

<sup>&</sup>lt;sup>4</sup>Initial age= age at initiation of cornstalk grazing period

<sup>&</sup>lt;sup>5</sup>Ending age= age at collecting weights following weaning

<sup>&</sup>lt;sup>6</sup>Weight per d of age at collecting weights following weaning

Cow Pregnancy Rate, % Year 1 ARDC DL ARDC CS

PHREC CS

PHREC DL

| Inputs, \$/pair/day                      | CS <sup>1</sup> |        | $DL^2$ |
|------------------------------------------|-----------------|--------|--------|
| Cornstalk rent <sup>3</sup>              | 0.20            |        | _      |
| Yardage                                  | 0.30            |        | 0.50   |
| Ration <sup>4</sup>                      | _               |        | 1.66   |
| Supplement <sup>4</sup>                  | 0.37            |        | _      |
|                                          |                 |        |        |
| Net cost, \$/pair/day                    | 0.87            |        | 2.16   |
| Net cost, \$/pair/wintering              | 143.55          |        | 356.40 |
| season                                   |                 |        |        |
|                                          |                 |        |        |
| Extra post-weaning feed,                 | 16.00           |        | _      |
| \$/pair <sup>5</sup>                     |                 |        |        |
| Lighter weaning wt, \$/pair <sup>6</sup> | 60.00           |        | _      |
|                                          |                 |        |        |
| Net change, \$/pair                      |                 | 136.85 |        |

<sup>&</sup>lt;sup>1</sup>CS= pairs wintered on cornstalks

<sup>&</sup>lt;sup>2</sup>DL= pairs wintered in drylot

<sup>&</sup>lt;sup>3</sup>Cornstalk rent = \$12 per acre

<sup>&</sup>lt;sup>4</sup>Distillers priced at 100% of corn assuming \$3.50 per bu of corn

<sup>&</sup>lt;sup>5</sup>Cost to feed an additional 3.6 lb. (DM) of ration at \$0.06 per lb. for 75 days to compensate for body condition reduction of cow

<sup>&</sup>lt;sup>6</sup>The difference in calf value at weaning between treatments; calf price, April 30; \$20/cwt price slide



### Summary

- Each producer needs to evaluate their resources and system options to see what might work best
- As prices change systems should be reevaluated
- Systems including partial confinement may be economically viable alternatives to grass systems

